TTS: General description

Purpose

Application to Analyze Linear Viscoelastic Data and perform Time-Temperature Superposition

Data Files

  • The first line of the file should contain the sample parameters separated by semi-colons (;). It may contain any number of parameters which will be read and saved as file-parameter in RepTate.

  • Then the data columns should appear, separated by spaces or tabs.

.osc extension

Text files with .osc extension should be organised as follows:

  • .osc files should contaion at least the parameter values for the:

    1. sample molar mass Mw,

    2. temperature T.

  • 3 columns separated by spaces or tabs containing respectively:

    1. frequency, \(\omega\),

    2. elastic modulus, \(G'\),

    3. loss modulus \(G''\).

Other columns will be ingnored. A correct .osc file looks like:

T=0;Mw=94.9;chem=PI;origin=LeedsDA;label=PI88k_09_PP-10;PDI=1.03;
Freq      G'          G"              Temp        Strain
rad/s     Pa          Pa              °C              %
100       3.4801E5    70871       -0.0079     0.96734
68.129    3.328E5     70723       -0.0088     0.96362
46.416    3.1675E5    71696       -0.0101     0.96238
...       ...         ...         ...         ...

Views

log(G’,G”(w))

BaseApplicationTTS.viewLogG1G2()[source]

Logarithm of the storage modulus \(\log(G'(\omega))\) and loss modulus \(\log(G''(\omega))\) vs \(\log(\omega)\)

../../../_images/TTS_logG1G2.png

G’,G”(w)

BaseApplicationTTS.viewG1G2()[source]

Storage modulus \(G'(\omega)\) and loss modulus \(G''(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_G1G2.png

etastar

BaseApplicationTTS.viewEtaStar()[source]

Complex viscosity \(\eta^*(\omega) = \sqrt{G'^2 + G''^2}/\omega\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_etastar.png

logetastar

BaseApplicationTTS.viewLogEtaStar()[source]

Logarithm of the complex viscosity \(\eta^*(\omega) = \sqrt{G'^2 + G''^2}/\omega\) vs \(\log(\omega)\)

../../../_images/TTS_logetastar.png

delta

BaseApplicationTTS.viewDelta()[source]

Loss or phase angle \(\delta(\omega)=\arctan(G''/G')\cdot 180/\pi\) (in degrees, in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_delta.png

tan(delta)

BaseApplicationTTS.viewTanDelta()[source]

Tangent of the phase angle \(\tan(\delta(\omega))=G''/G'\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_tandelta.png

log(tan(delta))

BaseApplicationTTS.viewLogTanDelta()[source]

\(\log(\tan(\delta(\omega)))=\log(G''/G')\) vs \(\log(\omega)\)

../../../_images/TTS_logtandelta.png

log(G*)

BaseApplicationTTS.viewLogGstar()[source]

Logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\) vs \(\log(\omega)\)

../../../_images/TTS_logGstar.png

log(tan(delta),G*)

BaseApplicationTTS.viewLogtandeltaGstar()[source]

Logarithm of the tangent of the loss angle \(\tan(\delta(\omega))=G''/G'\) vs logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\)

../../../_images/TTS_logtandeltaGstar.png

delta(G*)

BaseApplicationTTS.viewdeltatanGstar()[source]

Loss angle \(\delta(\omega)=\arctan(G''/G')\) vs logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\)

../../../_images/TTS_deltaGstar.png

J’,J”(w)

BaseApplicationTTS.viewJ1J2()[source]

Storage compliance \(J'(\omega)=G'/(G'^2+G''^2)\) and loss compliance \(J''(\omega)=G''/(G'^2+G''^2)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_J1J2.png

Cole-Cole

BaseApplicationTTS.viewColeCole()[source]

Cole-Cole plot: out of phase viscosity \(\eta''(\omega)=G'(\omega)/\omega\) vs dynamic viscosity \(\eta'(\omega)=G''(\omega)/\omega\)

../../../_images/TTS_ColeCole.png

log(G’)

BaseApplicationTTS.viewLogG1()[source]

Logarithm of the storage modulus \(\log(G'(\omega))\) vs \(\log(\omega)\)

../../../_images/TTS_logG1.png

G’

BaseApplicationTTS.viewG1()[source]

Storage modulus \(G'(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_G1.png

log(G”)

BaseApplicationTTS.viewLogG2()[source]

Logarithm of the loss modulus \(\log(G''(\omega))\) vs \(\log(\omega)\)

../../../_images/TTS_logG2.png

G”

BaseApplicationTTS.viewG2()[source]

Loss modulus \(G''(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/TTS_G2.png

log(G’,G”(w),tan(delta))

BaseApplicationTTS.viewLogG1G2tandelta()[source]

Logarithm of the storage modulus \(\log(G'(\omega))\), loss modulus \(\log(G''(\omega))\) and tangent of the loss angle \(\log(\tan(\delta(\omega)))=\log(G''/G')\) vs \(\log(\omega)\)

../../../_images/TTS_logG1G2tandelta.png