TTS: General description¶
Purpose¶
Application to Analyze Linear Viscoelastic Data and perform Time-Temperature Superposition
Data Files¶
The first line of the file should contain the sample parameters separated by semi-colons (
;
). It may contain any number of parameters which will be read and saved as file-parameter in RepTate.Then the data columns should appear, separated by spaces or tabs.
.osc
extension¶
Text files with .osc
extension should be organised as follows:
.osc
files should contaion at least the parameter values for the:sample molar mass
Mw
,temperature
T
.
3 columns separated by spaces or tabs containing respectively:
frequency, \(\omega\),
elastic modulus, \(G'\),
loss modulus \(G''\).
Other columns will be ingnored. A correct .osc
file looks like:
T=0;Mw=94.9;chem=PI;origin=LeedsDA;label=PI88k_09_PP-10;PDI=1.03;
Freq G' G" Temp Strain
rad/s Pa Pa °C %
100 3.4801E5 70871 -0.0079 0.96734
68.129 3.328E5 70723 -0.0088 0.96362
46.416 3.1675E5 71696 -0.0101 0.96238
... ... ... ... ...
Views¶
log(G’,G”(w))¶
- ApplicationTTS.viewLogG1G2()[source]¶
Logarithm of the storage modulus \(\log(G'(\omega))\) and loss modulus \(\log(G''(\omega))\) vs \(\log(\omega)\)

G’,G”(w)¶
- ApplicationTTS.viewG1G2()[source]¶
Storage modulus \(G'(\omega)\) and loss modulus \(G''(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

etastar¶
- ApplicationTTS.viewEtaStar()[source]¶
Complex viscosity \(\eta^*(\omega) = \sqrt{G'^2 + G''^2}/\omega\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

logetastar¶
- ApplicationTTS.viewLogEtaStar()[source]¶
Logarithm of the complex viscosity \(\eta^*(\omega) = \sqrt{G'^2 + G''^2}/\omega\) vs \(\log(\omega)\)

delta¶
- ApplicationTTS.viewDelta()[source]¶
Loss or phase angle \(\delta(\omega)=\arctan(G''/G')\cdot 180/\pi\) (in degrees, in logarithmic scale) vs \(\omega\) (in logarithmic scale)

tan(delta)¶
- ApplicationTTS.viewTanDelta()[source]¶
Tangent of the phase angle \(\tan(\delta(\omega))=G''/G'\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

log(tan(delta))¶
- ApplicationTTS.viewLogTanDelta()[source]¶
\(\log(\tan(\delta(\omega)))=\log(G''/G')\) vs \(\log(\omega)\)

log(G*)¶
- ApplicationTTS.viewLogGstar()[source]¶
Logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\) vs \(\log(\omega)\)

log(tan(delta),G*)¶
- ApplicationTTS.viewLogtandeltaGstar()[source]¶
Logarithm of the tangent of the loss angle \(\tan(\delta(\omega))=G''/G'\) vs logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\)

delta(G*)¶
- ApplicationTTS.viewdeltatanGstar()[source]¶
Loss angle \(\delta(\omega)=\arctan(G''/G')\) vs logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\)

J’,J”(w)¶
- ApplicationTTS.viewJ1J2()[source]¶
Storage compliance \(J'(\omega)=G'/(G'^2+G''^2)\) and loss compliance \(J''(\omega)=G''/(G'^2+G''^2)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

Cole-Cole¶
- ApplicationTTS.viewColeCole()[source]¶
Cole-Cole plot: out of phase viscosity \(\eta''(\omega)=G'(\omega)/\omega\) vs dynamic viscosity \(\eta'(\omega)=G''(\omega)/\omega\)

log(G’)¶
- ApplicationTTS.viewLogG1()[source]¶
Logarithm of the storage modulus \(\log(G'(\omega))\) vs \(\log(\omega)\)

G’¶
- ApplicationTTS.viewG1()[source]¶
Storage modulus \(G'(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

log(G”)¶
- ApplicationTTS.viewLogG2()[source]¶
Logarithm of the loss modulus \(\log(G''(\omega))\) vs \(\log(\omega)\)

GӦ
- ApplicationTTS.viewG2()[source]¶
Loss modulus \(G''(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

log(G’,G”(w),tan(delta))¶
- ApplicationTTS.viewLogG1G2tandelta()[source]¶
Logarithm of the storage modulus \(\log(G'(\omega))\), loss modulus \(\log(G''(\omega))\) and tangent of the loss angle \(\log(\tan(\delta(\omega)))=\log(G''/G')\) vs \(\log(\omega)\)
