LVE: General Description

Purpose

Application to Analyze Linear Viscoelastic Data

Data Files

  • The first line of the file should contain the sample parameters separated by semi-colons (;). It may contain any number of parameters which will be read and saved as file-parameter in RepTate.

  • Then the data columns should appear, separated by spaces or tabs.

.tts extension

Text files with .tts extension should be organised as follows:

  • .tts files should contain at least the parameter values for the:

    1. sample molar mass Mw,

    2. temperature T.

  • 3 columns separated by spaces or tabs containing respectively:

    1. frequency, \(\omega\),

    2. elastic modulus, \(G'\),

    3. loss modulus \(G''\).

Other columns will be ignored. A correct .tts file looks like:

T=-35;CTg=14.65;dx12=0;isof=true;Mw=13.5;chem=PI;PDI=1.04;
1.90165521264016E+0000      7.38023647054321E+0001      1.35152457625702E+0004     -2.99910000000000E+0001
3.01392554124040E+0000      1.99063258930248E+0002      2.14834778959042E+0004     -2.99900000000000E+0001
4.51700049635957E+0000      3.72861375546198E+0002      3.17756716623334E+0004     -3.99960000000000E+0001
...                         ...                         ...                        ...

Views

log(G’,G”(w))

BaseApplicationLVE.viewLogG1G2()[source]

Logarithm of the storage modulus \(\log(G'(\omega))\) and loss modulus \(\log(G''(\omega))\) vs \(\log(\omega)\)

../../../_images/LVE_logG1G2.png

G’,G”(w)

BaseApplicationLVE.viewG1G2()[source]

Storage modulus \(G'(\omega)\) and loss modulus \(G''(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_G1G2.png

etastar

BaseApplicationLVE.viewEtaStar()[source]

Complex viscosity \(\eta^*(\omega) = \sqrt{G'^2 + G''^2}/\omega\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_etastar.png

logetastar

BaseApplicationLVE.viewLogEtaStar()[source]

Logarithm of the complex viscosity \(\eta^*(\omega) = \sqrt{G'^2 + G''^2}/\omega\) vs \(\log(\omega)\)

../../../_images/LVE_logetastar.png

delta

BaseApplicationLVE.viewDelta()[source]

Loss or phase angle \(\delta(\omega)=\arctan(G''/G')\cdot 180/\pi\) (in degrees, in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_delta.png

tan(delta)

BaseApplicationLVE.viewTanDelta()[source]

Tangent of the phase angle \(\tan(\delta(\omega))=G''/G'\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_tandelta.png

log(tan(delta))

BaseApplicationLVE.viewLogTanDelta()[source]

\(\log(\tan(\delta(\omega)))=\log(G''/G')\) vs \(\log(\omega)\)

../../../_images/LVE_logtandelta.png

log(G*)

BaseApplicationLVE.viewLogGstar()[source]

Logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\) vs \(\log(\omega)\)

../../../_images/LVE_logGstar.png

log(tan(delta),G*)

BaseApplicationLVE.viewLogtandeltaGstar()[source]

Logarithm of the tangent of the loss angle \(\tan(\delta(\omega))=G''/G'\) vs logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\)

../../../_images/LVE_logtandeltaGstar.png

delta(G*)

BaseApplicationLVE.viewdeltatanGstar()[source]

Loss angle \(\delta(\omega)=\arctan(G''/G')\) vs logarithm of the modulus of the complex viscosity \(|G^*(\omega)|=\sqrt{G'^2+G''^2}\)

../../../_images/LVE_deltaGstar.png

J’,J”(w)

BaseApplicationLVE.viewJ1J2()[source]

Storage compliance \(J'(\omega)=G'/(G'^2+G''^2)\) and loss compliance \(J''(\omega)=G''/(G'^2+G''^2)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_J1J2.png

Cole-Cole

BaseApplicationLVE.viewColeCole()[source]

Cole-Cole plot: out of phase viscosity \(\eta''(\omega)=G'(\omega)/\omega\) vs dynamic viscosity \(\eta'(\omega)=G''(\omega)/\omega\)

../../../_images/LVE_ColeCole.png

log(G’)

BaseApplicationLVE.viewLogG1()[source]

Logarithm of the storage modulus \(\log(G'(\omega))\) vs \(\log(\omega)\)

../../../_images/LVE_logG1.png

G’

BaseApplicationLVE.viewG1()[source]

Storage modulus \(G'(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_G1.png

log(G”)

BaseApplicationLVE.viewLogG2()[source]

Logarithm of the loss modulus \(\log(G''(\omega))\) vs \(\log(\omega)\)

../../../_images/LVE_logG2.png

G”

BaseApplicationLVE.viewG2()[source]

Loss modulus \(G''(\omega)\) (in logarithmic scale) vs \(\omega\) (in logarithmic scale)

../../../_images/LVE_G2.png

log(G’,G”(w),tan(delta))

BaseApplicationLVE.viewLogG1G2tandelta()[source]

Logarithm of the storage modulus \(\log(G'(\omega))\), loss modulus \(\log(G''(\omega))\) and tangent of the loss angle \(\log(\tan(\delta(\omega)))=\log(G''/G')\) vs \(\log(\omega)\)

../../../_images/LVE_logG1G2tandelta.png