Theories common to all applications

Polynomial

Summary

Fit a polynomial of degree \(n\) to the data

  • Function
    \[y(x) = \sum_{i=0}^n A_i x^i\]
  • Parameters
    • \(n\): degree of the polynomial function.

    • \(A_i\): polynomial coefficeints.

Power Law

Summary

Fit a power law to the data

  • Function
    \[y(x) = a x^b\]
  • Parameters
    • \(a\): prefactor.

    • \(b\): exponent.

Exponential

Summary

Fit a single exponential decay to the data

  • Function
    \[y(x) = a \exp(-x/T)\]
  • Parameters
    • \(a\): prefactor.

    • \(T\): exponential “time” constant.

Double Exponential

Summary

Fit two single exponential decay to the data

  • Function
    \[y(x) = a_1 \exp(x/T_1) + a_2 \exp(-x/T_2)\]
  • Parameters
    • \(a_1\), \(a_2\): prefactors.

    • \(T_1\), \(T_2\): exponential “time” constants.

Algebraic Expression

Summary

Fit a user algebraic expression with \(n\) parameters.

The expression can contain any of the following mathematical functions: sin, cos, tan, arccos, arcsin, arctan, arctan2, deg2rad, rad2deg, sinh, cosh, tanh, arcsinh, arccosh, arctanh, around, round, rint, floor, ceil,trunc, exp, log, log10, fabs, mod, e, pi, power, sqrt

It is the responsability of the user to input functions that make mathematical sense.

  • Function
    \[y(x) = f({A_i}, x, F_{params})\]
  • Parameters
    • \(n\): number of parameters.

    • \(A_i\): coefficeints of the algebraic expression