Source code for RepTate.theories.TheoryDSMLinear

# RepTate: Rheology of Entangled Polymers: Toolkit for the Analysis of Theory and Experiments
# --------------------------------------------------------------------------------------------------------
#
# Authors:
#     Jorge Ramirez, jorge.ramirez@upm.es
#     Victor Boudara, victor.boudara@gmail.com
#
# Useful links:
#     http://blogs.upm.es/compsoftmatter/software/reptate/
#     https://github.com/jorge-ramirez-upm/RepTate
#     http://reptate.readthedocs.io
#
# --------------------------------------------------------------------------------------------------------
#
# Copyright (2017-2023): Jorge Ramirez, Victor Boudara, Universidad Politécnica de Madrid, University of Leeds
#
# This file is part of RepTate.
#
# RepTate is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RepTate is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RepTate.  If not, see <http://www.gnu.org/licenses/>.
#
# --------------------------------------------------------------------------------------------------------
"""Module TheoryDSMLinear"""
import numpy as np
from RepTate.core.Parameter import Parameter, ParameterType, OptType
from RepTate.gui.QTheory import QTheory
from scipy import special, optimize


[docs] class TheoryDSMLinear(QTheory): """Calculate the Discrete Slip Link theory for the linear rheology of linear entangled polymers. * **Parameters**""" thname = "CFSM+Rouse" description = "Clustered Fixed Slip Link theory for linear entangled polymers" citations = [ "Katzarova, M. et al, Rheol Acta 2015, 54(3), 169-183.", "Andreev, M. et al., J. Rheol. 2014, 58(3), 723-736", ] doi = [ "https://doi.org/10.1007/s00397-015-0836-0", "https://doi.org/10.1122%2F1.4869252", ] # html_help_file = '' single_file = ( False # False if the theory can be applied to multiple files simultaneously ) def __init__(self, name="", parent_dataset=None, axarr=None): """**Constructor**""" super().__init__(name, parent_dataset, axarr) self.function = self.calculate # main theory function self.has_modes = False # True if the theory has modes # Declare theory parameters and Material parameters self.parameters["MK"] = Parameter( name=r"MK", value=300, description="Molecular weight of Kuhn step (Da)", type=ParameterType.real, opt_type=OptType.const, display_flag=True, ) self.parameters["rho0"] = Parameter( name=r"rho0", value=1.0, description="Density (g/cc)", type=ParameterType.real, opt_type=OptType.const, display_flag=True, ) self.parameters["Mc"] = Parameter( name=r"Mc", value=2000, description="Molecular weight of a cluster in Da", type=ParameterType.real, opt_type=OptType.opt, display_flag=True, ) self.parameters["tau_c"] = Parameter( name=r"tau_c", value=0.1, description="Time constant used to fit CFSM results (beta = 1) to experimental data", type=ParameterType.real, opt_type=OptType.opt, display_flag=True, ) # self.parameters["beta"] = Parameter( # name=r'beta', # value=30, # description="Entanglement activity parameter for input to DSM simulations", # type=ParameterType.real, # opt_type=OptType.opt, # display_flag=True) # self.parameters["tau_K"] = Parameter( # name=r'tau_K', # value=tau_K, # description="Time constant for comparing DSM results to experimental data", # type=ParameterType.real, # opt_type=OptType.const, # display_flag=True) # self.parameters["Nc"] = Parameter( # name=r'N_c', # value=Nc, # description="Number of entanglement clusters", # type=ParameterType.real, # opt_type=OptType.const, # display_flag=True) self.get_material_parameters() ft = self.parent_dataset.files[0].data_table Mw = ( float(parent_dataset.files[0].file_parameters["Mw"]) * 1000.0 ) # units of Da T = ( float(parent_dataset.files[0].file_parameters["T"]) + 273.15 ) # In units of K R = 8.314462 * 10**3 # units of L Pa K^-1 mol^-1 rho0 = self.parameters["rho0"].value MK = self.parameters["MK"].value # --------------------------------------------- # CALCULATE DSM PARAMETERS FROM CROSSOVER FREQUENCY crossover_limits = self.find_crossover_limits(data=ft.data) [omega_x, Gx] = self.Gslfx(crossover_limits, data=ft.data) solNc = optimize.brentq(self.solveNc, a=1, b=1000, args=(Gx, Mw, rho0, R, T)) if solNc > 0: self.Nc = solNc self.Mc = Mw / self.Nc self.set_param_value("Mc", self.Mc) self.tau_c = 151.148 / (omega_x * self.Nc**3.50) self.set_param_value("tau_c", self.tau_c) self.beta = Mw / (0.56 * self.Nc * MK) - 1 # self.set_param_value("beta", self.beta) self.tau_K = self.tau_c / (0.265 * self.beta ** (8.0 / 3.0)) self.N_K = Mw / MK
[docs] def tandelta(self, omega, data): """Calculate the interpolated tan(delta)""" wGp = data[:, 0] wGdp = data[:, 0] Gp = data[:, 1] Gdp = data[:, 2] return np.interp(omega, wGdp, Gdp) / np.interp(omega, wGp, Gp) - 1
[docs] def solveNc(self, x, Gx, Mw, rho, R, T): """Function to solve for Nc from frequency crossover data (linear chains only)""" GxGN0 = [9.191488, 2336.3116, 14232.0515, 33.81303697, 13102.47993, 1068.7744] G0 = ( rho * R * T / (2 * Mw) * (x - 3) ) # from our definition of R, G0 will have units of kPa func = (GxGN0[0] + GxGN0[1] * (1 / x) + GxGN0[2] * ((1 / x) ** 2)) / ( GxGN0[3] + GxGN0[4] * (1 / x) + GxGN0[5] * ((1 / x) ** 2) ) return func * G0 - Gx / 1000 # Gx has units of Pa
[docs] def Gslfx(self, crossover_limits, data): """Function to find crossover frequency from limits""" sol = optimize.brentq( self.tandelta, crossover_limits[0], crossover_limits[1], args=(data) ) return sol, np.interp(sol, data[:, 0], data[:, 1])
[docs] def find_crossover_limits(self, data): """Find the lower and upper limits of the crossover frequency""" omega = data[:, 0] Gp = data[:, 1] Gdp = data[:, 2] for j in range(0, len(omega)): if Gdp[j] - Gp[j] < 0: if j < 10: ind1 = 0 else: ind1 = j - 10 if j + 10 >= len(omega): ind2 = len(omega) - 1 else: ind2 = j + 10 omega_range = [omega[ind1], omega[ind2]] break return omega_range
[docs] def set_linear_params(self, Nc): """Returns fixed parameters for calculating linear chain G* data""" alpha1 = [-0.00051, -0.0205] alpha2 = [0.00029, 0.109957] alpha3 = [17.69589, 1.04026, -0.00095677] tau1 = [0.6288876, 0.119458] tau2 = [1.52508156, 0.02996758796795] tau3 = [3.110954, 0.022615] tau4 = [3.4840295, 0.0142809] alpha = [ alpha1[0] * Nc + alpha1[1], alpha2[0] * Nc + alpha2[1], alpha3[0] / Nc + alpha3[1] + alpha3[2] * Nc, ] tau = [ tau1[1] * Nc ** tau1[0], tau2[1] * Nc ** tau2[0], tau3[1] * Nc ** tau3[0], tau4[1] * Nc ** tau4[0], ] alphaR = [0.64635, -0.4959, -1.2716] tauR = [ 6.313268381616272 * (10**-9), 2.181509372282138 * (10**-7), 0.797317365925168, 18.201382525250114, ] GR = 1942.29 return [alpha, tau, alphaR, tauR, GR]
[docs] def supp_prod(self, tau, alpha, i): """Returns the product operator used in the G* calculation""" result = 1 for j in range(1, i + 1): result *= tau[j] ** (alpha[j - 1] - alpha[j]) return result
[docs] def Gstar(self, omega, params, Rouse=False): """Calculates G* using DSM or Rouse parameters""" if Rouse: alpha = params[2] tau = params[3] G0 = params[4] else: alpha = params[0] tau = params[1] G0 = params[5] sumGp1 = 0 sumGp2 = 0 sumGdp1 = 0 sumGdp2 = 0 for i in range(0, len(alpha)): sumGp1 += (self.supp_prod(tau, alpha, i) / (alpha[i] + 2)) * ( tau[i + 1] ** (alpha[i] + 2) * special.hyp2f1( 1, (alpha[i] + 2) / 2, (alpha[i] + 4) / 2, -(omega**2) * tau[i + 1] ** 2, ) - tau[i] ** (alpha[i] + 2) * special.hyp2f1( 1, (alpha[i] + 2) / 2, (alpha[i] + 4) / 2, -(omega**2) * tau[i] ** 2, ) ) sumGp2 += ( self.supp_prod(tau, alpha, i) * (tau[i + 1] ** alpha[i] - tau[i] ** alpha[i]) / alpha[i] ) sumGdp1 += (self.supp_prod(tau, alpha, i) / (alpha[i] + 1)) * ( tau[i + 1] ** (alpha[i] + 1) * special.hyp2f1( 1, (alpha[i] + 1) / 2, (alpha[i] + 3) / 2, -(omega**2) * tau[i + 1] ** 2, ) - tau[i] ** (alpha[i] + 1) * special.hyp2f1( 1, (alpha[i] + 1) / 2, (alpha[i] + 3) / 2, -(omega**2) * tau[i] ** 2, ) ) sumGdp2 += ( self.supp_prod(tau, alpha, i) * (tau[i + 1] ** alpha[i] - tau[i] ** alpha[i]) / alpha[i] ) return G0 * omega**2 * sumGp1 / sumGp2 + 1j * (G0 * omega * sumGdp1 / sumGdp2)
[docs] def do_error(self, line): """Report the error of the current theory Report the error of the current theory on all the files, taking into account the current selected xrange and yrange. File error is calculated as the mean square of the residual, averaged over all points in the file. Total error is the mean square of the residual, averaged over all points in all files. """ super().do_error(line) self.print_DSM_params()
[docs] def print_DSM_params(self): """Print out parameters for DSM simulations""" Mc = self.parameters["Mc"].value tau_c = self.parameters["tau_c"].value # beta = self.parameters["beta"].value MK = self.parameters["MK"].value beta = Mc / 0.56 / MK - 1.0 tau_K = tau_c / (0.265 * beta ** (8.0 / 3.0)) self.Qprint("<b>Additional FSM Parameters:</b>") tab_data = [["%-18s" % "Name", "%-18s" % "Value"]] tab_data.append(["%-18s" % "<b>tau_K</b>", "%18.4g" % tau_K]) tab_data.append(["%-18s" % "<b>beta</b>", "%18.4g" % beta]) self.Qprint(tab_data) tab_data = [["%-18s" % "File", "%-18s" % "NK", "%-18s" % "Nc"]] for f in self.theory_files(): Mw = float(f.file_parameters["Mw"]) * 1000 NK = Mw / MK Nc = Mw / Mc tab_data.append(["%-18s" % f.file_name_short, "%18.4g" % NK, "%18.4g" % Nc]) self.Qprint(tab_data)
[docs] def calculate(self, f=None): """ CLUSTERED FIXED SLIP-LINK (CFSM) + ROUSE MODEL FOR LINEAR VISCOELASTICITY PARAMETERS: > Mc - molecular weight of cluster > Nc - number of clusters > tau_c - time constant to compare CFSM results to experimental data > beta - entanglement activity parameter for input to DSM simulations > NK - number of Kuhn steps for input into DSM simulation > tau_K - time constant to compare DSM results to experimental data """ # --------------------------------------------- # FUNCTION INPUT ft = f.data_table tt = self.tables[f.file_name_short] tt.num_columns = ft.num_columns tt.num_rows = ft.num_rows tt.data = np.zeros((tt.num_rows, tt.num_columns)) tt.data[:, 0] = ft.data[:, 0] MK = self.parameters["MK"].value rho0 = self.parameters["rho0"].value Mw = float(f.file_parameters["Mw"]) * 1000.0 # units of Da T = float(f.file_parameters["T"]) + 273.15 # units of K R = 8.314462 * 10**3 # units of L Pa K^-1 mol^-1 Mc = self.parameters["Mc"].value tau_c = self.parameters["tau_c"].value # beta = self.parameters["beta"].value beta = Mc / 0.56 / MK - 1.0 Nc = Mw / Mc tau_K = tau_c / (0.265 * beta ** (8.0 / 3.0)) N_K = Mw / MK # END FUNCTION INPUT # --------------------------------------------- # #--------------------------------------------- # # CALCULATE DSM PARAMETERS FROM CROSSOVER FREQUENCY # crossover_limits = self.find_crossover_limits(data=ft.data) # [omega_x, Gx] = self.Gslfx(crossover_limits,data=ft.data) # solNc = optimize.brentq(self.solveNc,a=1,b=1000,args=(Gx,Mw,rho0,R,T)) # if solNc>0: # self.Nc = solNc # self.Mc = Mw/self.Nc # self.tau_c = 151.148/(omega_x*self.Nc**3.50) # self.beta = Mw/(0.56*self.Nc*MK) - 1 # self.tau_K = self.tau_c/(0.265*self.beta**(8.0/3.0)) # self.N_K = Mw/MK # - - - - - - - - - - - - - - - - - - - - - - - # CALCULATE CFSM AND HIGH FREQUENCY ROUSE RELAXATION MODULUS params = self.set_linear_params(Nc) G0 = rho0 * R * T / Mw params.append(G0) Gstar_vec = np.vectorize(self.Gstar, excluded=["Rouse", "params"]) CFSM = ( 0.5 * (Nc - 3) * Gstar_vec(omega=tt.data[:, 0] * tau_c, params=params, Rouse=False) ) prefactor = G0 * ((N_K + beta) / (beta + 1)) Rouse = prefactor * Gstar_vec( omega=(tt.data[:, 0] * tau_K * (beta**2)), params=params, Rouse=True ) Gstar = CFSM + Rouse # G* has units of kPa tt.data[:, 1] = Gstar.real * 1000 # convert to Pa tt.data[:, 2] = Gstar.imag * 1000